skip to main content


Search for: All records

Creators/Authors contains: "Michaut, Chloé"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 . 
    more » « less
  2. Abstract

    Cyclical ground deformation, associated seismicity, and elevated degassing are important precursors to explosive eruptions at silicic volcanoes. Regular intervals for elevated activity (6–30 hr) have been observed at volcanoes such as Mount Pinatubo in the Philippines and Soufrière Hills in Montserrat. Here, we explore a hypothesis originally proposed by Michaut et al. (2013,https://doi.org/10.1038/ngeo1928) where porosity waves containing magmatic gas are responsible for the observed periodic behavior. We use two‐phase theory to construct a model where volatile‐rich, bubbly, viscous magma rises and decompresses. We conduct numerical experiments where magma gas waves with various frequencies are imposed at the base of the model volcanic conduit. We numerically verify the results of Michaut et al. (2013,https://doi.org/10.1038/ngeo1928) and then expand on the model by allowing magma viscosity to vary as a function of dissolved water and crystal content. Numerical experiments show that gas exsolution tends to damp the growth of porosity waves during decompression. The instability and resultant growth or decay of gas wave amplitude depends strongly on the gas density gradient and the ratio of the characteristic magma extraction rate to the characteristic magma degassing rate (Damköhler number, Da). We find that slow degassing can lead to a previously unrecognized filtering effect, where low‐frequency gas waves may grow in amplitude. These waves may set the periodicity of the eruptive precursors, such as those observed at Soufrière Hills Volcano. We demonstrate that degassed, crystal‐rich magma is susceptible to the growth of gas waves which may result in the periodic behavior.

     
    more » « less